卒論@山形大学アメニティ研 https://a.yamagata-u.ac.jp/amenity/Thesis/ThesisIndex.aspx 2018-02-23 卒論@山形大学アメニティ研 粘土と高分子 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=619 2018-02-20 ⇒#385@学会; ⇒1974@講義; ⇒4015@講義; ⇒#13309@試料; ヨモギの研究。 焼き豚の研究。 ⇒#43@図; ⇒#41@図;<p>白谷貴明,&nbsp;山形大学&nbsp;修士論文(仁科・立花・伊藤研),&nbsp;(2019).</p> 高速マンガン酸リチウム https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=606 2018-02-19 ⇒#20@材料; ⇒#4640@講義; ⇒#11320@シラバス; <p>石川智士,&nbsp;山形大学&nbsp;修士論文(仁科・立花・伊藤研),&nbsp;(2018).</p> 電力自由化に向けた鉛電池の遠隔モニタリング&コントロール https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=592 2018-02-19 電力自由化とスマートアグリに向けた遠隔モニタリングとエネルギーハーベスティング ⇒#588@卒論; <p>HN,&nbsp;山形大学&nbsp;卒業論文(仁科・立花・伊藤研),&nbsp;(2016).</p> アセチレンブラックとカーボンナノチューブを使ったスラリー最適化と活物質充填率向上 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=588 2018-02-19 【材料】カーボンナノチューブ⇒#3164@材料; ⇒#592@卒論;<p>菅野広彰,&nbsp;山形大学&nbsp;卒業論文(仁科・立花・伊藤研),&nbsp;(2016).</p> 電気二重層キャパシタの静電容量に着目した柿炭の評価 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=610 2018-01-24 電気二重層キャパシタの静電容量に着目した柿炭の評価 籾殻燻炭、スターリングエンジン、発電、モニタリング ⇒#13846@試料;<p>太田貴之,&nbsp;山形大学&nbsp;卒業論文(仁科・立花・伊藤研),&nbsp;(2018).</p> 導電性高分子と酸化被膜の間にかかる圧力がコンデンサの特性に与える影響 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=621 2018-01-24 導電性高分子と酸化被膜の間にかかる圧力がコンデンサの特性に与える影響 ⇒#745@装置; ⇒#592@装置;<p>増子勝一,&nbsp;山形大学&nbsp;卒業論文(仁科・立花・伊藤研),&nbsp;(2018).</p> バインダー、高速活物質 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=618 2018-01-11 まだだね。 ⇒#13355@試料; ⇒#13509@試料; コバルト酸リチウム⇒#465@化学種; ⇒#391@学会; ⇒#92@物理量; ⇒#36@表;<p>みゆき,&nbsp;山形大学&nbsp;修士論文(仁科・立花・伊藤研),&nbsp;(2019).</p> 正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=563 2018-01-03 正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ リチウム電池の正極活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗に及ぼす影響(仮) 活物質の種類がアルミニウム|炭素材料の接触抵抗に及ぼす影響(仮) リチウム電池の正極においてアルミニウム集電体と炭素導電助材の接触抵抗の低減は電池の内部抵抗を小さくしてレート特性を向上できると同時に過充電抑制の効果が期待できる。そのためアルミニウム集電体に炭素材料をアンダーコートするなどの方法がとられてきた。しかしながら合材に含まれる活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗へ与える影響について十分に解明されているとは言えない。そこで本研究では合材に含まれる活物質の種類を変えて、それがどのようにアルミニウム集電体と炭素導電助材の接触抵抗に影響を与えるか調べることを目的とした。 【学会】小野寺伸也、…らは、2013年に弘前パークホテルで開催された第30回ARS弘前コンファレンスにおいてリチウムイオン二次電池の集電体アルミニウムと活材層の接触抵抗に対するCNTアンダーコートの効果について報告して<p>しんや,&nbsp;山形大学&nbsp;修士論文(仁科・立花研),&nbsp;(2016).</p> アクリルバインダーの耐酸化性評価(仮) https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=565 2018-01-03 アクリルバインダーの耐酸化性評価(仮) アクリスバインダーの耐酸化性はどうなっているのかなあ? 学会参加計画は? 水系バインダーを使ったときのスラリーのアルカリ化についてもちょっと不明ですね。<p>なおき,&nbsp;山形大学&nbsp;修士論文(仁科・立花・伊藤研),&nbsp;(2016).</p> アルミニウムと導電性高分子の密着性 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=612 2018-01-02 ⇒#13@図; バインダー、電極 鈴木 崇広⇒#609@卒論; ⇒#92@物理量; ⇒#305@物理量; ⇒#12@図; ⇒#2325@研究ノート; <p>後藤武,&nbsp;山形大学&nbsp;卒業論文(仁科・立花・伊藤研),&nbsp;(2018).</p> アルミニウム集電体の皮膜形成に対するプライマー塗布の効果(仮) https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=467 2018-01-02 【2011年度(平成23)卒業研究】⇒#3493@講義; 川田聖人,長…らは、2011年にタワーホール船堀(〒134-0091 東京都江戸川区船堀4-1-1) で開催された第52回電池討論会においてアルミニウム集電体の不働態皮膜修復に及ぼすバインダーの種類とスラリー中炭素含有量の影響について報告している⇒#298@学会;。 川田清人,立…らは、2011年に名古屋大学(愛知県名古屋市千種区不老町)で開催された表面技術協会第124回講演大会において非水溶液におけるアルミニウムのアノード酸化に及ぼすアニオンの種類(仮)について報告している⇒#296@学会;。 ○川田聖人,…らは、2010年に岩手県盛岡市上田三丁目18番8号 岩手大学で開催された平成22年度化学系学協会東北大会においてアルミニウム集電体の皮膜形成に対するプライマー塗布の効果について報告している⇒#279@学会;。 【後輩】 めぐ⇒#459@卒論;ちあき⇒#472@卒論;しょうた⇒#476@卒論;たくや⇒#482@卒論; 【化学種】 酸化アルミニウム⇒#494@化学種; フッ化アルミニウム⇒#<p>かわだきよひと,&nbsp;山形大学&nbsp;修士論文(仁科・立花研),&nbsp;(2012).</p> エッチドアルミ箔に塗布したバインダーの接触角がサイクル特性に及ぼす影響 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=342 2018-01-02 接触角⇒#281@物理量; 比抵抗⇒#173@物理量;5MΩのイオン交換水で5wt%アジピン酸アンモニウム水溶液を調整した。 銀線を3M硝酸で前処理した後、0.1M塩酸中で0.8mA/cm2の電流密度で15分間電解し、銀/塩化銀を作成した。 アジピン酸アンモニウム水溶液を寒天で固め、塩橋を作成した。 0.1MNaOH水溶液および0.65M硝酸を調整した。 恒温槽に3電解式の電解セルを組み立てた。 アルミニウムを0.1MNaOH水溶液および0.65M硝酸で前処理した後、ポテンショスタット、ファンクションジェネレーター、XYレコーダーを用いてサイクリックボルタモグラムを測定した。 1.アルミニウムの前処理・・・NaOH(60sec)→蒸留水(10sec)→硝酸(30sec)→蒸留水(10sec) 2.蒸留水から出してから15秒後に自然電位測定。 3.自然電位を測定してから30秒後に掃引開始。 ⇒#19@材料; <実験結果> 図3~5に測定を行ったボルタモグラムを示す。 図3~5は同日に同条件で6回連続測定したうちの3枚である。 卒業研究中<p>なおちゃん,&nbsp;山形大学&nbsp;卒業論文(仁科・立花研),&nbsp;(2006).</p> 有機電解液を用いたニオブ材料の電解エッチング条件の検討 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=375 2018-01-01 有機電解液を用いたニオブ材料の電解エッチング条件の検討 化学研磨におけるニオブのバリ除去加工 ニオブ⇒#812@講義; K. Tac…らは、2007年にElectrolytic Etching of Niobium Expand Metal in Organic Electrolyteについて報告し、有機電解液中でニオブのエクスパンドメタルの電解エッチングを試みた。 後藤 善仁は、2007年に、それまでの研究を有機電解液を用いたニオブ材料の電解エッチング条件の検討というテーマで卒業論…と述べている⇒#17731@業績;。 【関連講義】卒業研究(C1-電気化学2004~),刊行物@C1(2007◆H19)⇒#2877@講義; 立花和宏らは、2002年に横浜で開催された2002年電気化学秋季大会において種々の電解条件下における非水溶液中でのニオブのエッチング制御について報告している⇒#98@学会;。 筆者は、2006年にで開催された平成18年度 化学系学協会東北大会において有機電解液を用いたニオブ材料の電解研磨条件の検討について報告している⇒#209@学会;<p>後藤 善仁,&nbsp;山形大学&nbsp;卒業論文(仁科・立花研),&nbsp;(2007).</p> 導電性高分子固体電解コンデンサ https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=607 2017-12-31 導電性高分子固体電解コンデンサ 電解コンデンサの絶縁性とは? ⇒1974@講義; ⇒4015@講義; https://edu.yz.yamagata-u.ac.jp/Public/54299/c1/Extra_Syllabus/2017_H29/20170306.asp ⇒#92@物理量; ⇒#380@学会; ⇒#4643@講義;<p>関口理希,&nbsp;山形大学&nbsp;修士論文(仁科・立花・伊藤研),&nbsp;(2018).</p> 生体を対象とした高感度L-バンドESR装置の開発 https://a.yamagata-u.ac.jphttps://edu.yz.yamagata-u.ac.jp/developer/Asp/Youzan/Academic/@Thesis.asp?nThesisID=173 2017-12-31 生体を対象とした高感度L-バンドESR装置の開発 えびな⇒#227@卒論; ◆2003(平成15)年度ノート⇒#199@ノート; ◆2002(平成14)年度ノート⇒#200@ノート; ◆2001(平成13)年度ノート⇒#201@ノート; <p>えびな,&nbsp;山形大学&nbsp;卒業論文(尾形・仁科研究室),&nbsp;(2002).</p>