鷹山 (C)1996-2020 Copyright  データベースアメニティ研究所 Connected via IPv4
バーチャル卒業式やりませんか?
研究テーマ一覧
ABCDEFGHIJKLMNOPQRSTUVWXYZ ×
 

(ID=719)

はるかちゃん, 山形大学 修士論文(仁科・立花・伊藤研), (2022).

高速マンガン酸リチウム?

https://edu.yz.yamagata-u.ac.jp/Public/54299/2015/tdx76759/Potentiostat.asp

のぶちゃん, 山形大学 修士論文(仁科・立花・伊藤研), (2022).

(ID=721)

ひろおみくん, 山形大学 修士論文(仁科・立花・伊藤研), (2022).

(ID=722)

いとう, 山形大学 卒業論文(仁科・立花・伊藤研), (2021).

(ID=723)

こおりやま, 山形大学 卒業論文(仁科・立花・伊藤研), (2021).

PEDOTの漏れ?配向?

⇒#67@プロジェクト; 4年計画で。

きりょう, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2021).

レーシングカーのバッテリーマネジメント(仮)

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2021).

粘土の電気化学的特性を利用したエネルギーデバイスとしての可能性

⇒#419@学会; ⇒#3803@材料;

はるかちゃん, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

ポリフッ化ビニリデン/N-メチルピロリドン溶液の光学的観察

ポリフッ化ビニリデン/N-メチルピロリドン溶液の光学的観察 ⇒483@化学種; ⇒#623@卒論;

HN, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

導電性高分子アルミ電解コンデン サにおける陽極箔表面処理による 耐電圧の向上性

⇒#71@プロジェクト; ⇒#67@プロジェクト; ⇒#1589@講義;

大沼 宏臣, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

p-n接合の電流電圧特性を利用した粉体活物質の評価法の検討

p-n接合の電流電圧特性を利用した粉体活物質の評価法の検討

HN, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

乾燥中に測定可能なセル開発とそれを用いた水系粘土分散液の乾燥中の電気化学的測定

乾燥中に測定可能なセル開発とそれを用いた水系粘土分散液の乾燥中の電気化学的測定 ⇒#4844@講義;

くすだ, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

アルミニウム電解コンデンサ電解液用溶媒の劣化要因の特定

⇒#71@プロジェクト; ⇒#38@図; ⇒#33@図; ⇒#71@プロジェクト;

HN, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

テーマ名

あ, 山形大学 卒業論文(), (2020).

高速マンガン酸リチウムが機能する正極の設計

⇒#66@プロジェクト;

のぶちゃん, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

導電性高分子アルミ電解コンデンサの耐電圧特性に関する研究

導電性高分子アルミ電解コンデンサの耐電圧特性に関する研究 ⇒#305@物理量;

HN, 山形大学 卒業論文(仁科・立花・伊藤研究室), (2020).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

テーマ名

HN, 山形大学 卒業論文(), (2019).

アルミニウム電解コンデンサの耐圧向上剤がアルミニウム純度に及ぼす影響

⇒#33@図; ⇒#38@図; ⇒#75@プロジェクト;

小森 至, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

高電圧印加時のN-メチルピロリドンに溶解したポリフッ化ビニリデンの劣化の可視化

リチウムイオン二次電池の製造工程では、正極材料を集電体箔にスラリーとして塗布乾燥する。そのため、スラリーの分散媒であるPVDF/NMP溶液の諸現象について理解を深めることは非常に重要である。PVDFは結晶化を起こすことも知られている。その結晶はエコー検査などに応用されている。NMP中に溶解していても結晶化する可能性はあるが、それについて観察されたことはない。 ⇒#77@プロジェクト; ○阿部、、、立花、伊藤、仁科 正極スラリー中に含まれる金属による電池の化学短絡 正極合剤中に含まれる金属は、電池の化学短絡を引き起こし電池の安全を損なう原因となる。本研究では、交流インピーダンス法を使って正極合剤中に含まれる金属を検出できるかどうか試みた結果について報告する。 ⇒#4046@講義; 有機電解液 ⇒#562@卒論; ⇒#615@卒論; ⇒#3611@講義;

阿部 友香, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

洗濯ばさみ画鋲セルを用いたエネルギーデバイス材料の評価

当研究室の固固接触実現の歴史は4年前に遡る。4年前は正極と負極が接触する短絡を防止するためにパンチラベルを使用したセルが作成された。だが問題点があった。誰でも作れるわけではなかった。工業とは誰でも同じようにできることが大前提であるため、自然と廃れていった。そして誰でも作れるセルを目指して2年前に洗濯ばさみと画鋲を使用したセルが作られた。洗濯ばさみは圧力がほどよいため奇跡的に短絡を回避することができた。パンチラベルを使ったセルに比べて誰でも作りやすく、挟む物質の自由度も高い。本研究では様々な材料を洗濯ばさみ画鋲セルに挟み、実験・観察をおこなった。 ⇒#65@図; 活物質のインピーダンスによる評価。 AI・粘土のXRD・導電性高分子・世間を知る キャッシュレス決済 ロボティック・プロセス・オートメーション ⇒#629@卒論; ⇒#412@学会;

今井 直人, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

電気化学における3DCADならびにプリンターの利用の検討

3Dプリンター CNT|LMO|CNT ⇒#14191@試料; ⇒#14174@試料; ⇒#13535@試料; ⇒#65@図; ⇒#104@図; PLA樹脂 で作成したセルを 15h以上放置の結果セル本体:柔らかくなる、水が漏れる等の問題はないが果実のようなにおいを確認したため蓋の密閉性に不安がある。電極(Cu):変色や銅の脱落は見られなかった。電解液:六フッ化リン酸リチウムEC+DEC(1:1) PLA樹脂は有機電解液によって侵されない

大前 国生, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

金属析出の観察・分散度のインピーダンス変化高速充放電対応型マンガン酸リチウムのホール伝導性の簡便迅速評価

⇒#66@プロジェクト; アルミニウムは、軽量で電気伝導性がよく耐食性があるためリチウムイオン二次電池の正極集電体に広く使われている。 しかし、表面に酸化皮膜を作るため、その接触抵抗を低減することは電池の出力特性を向上させる上で重要である。 酸化皮膜の接触抵抗は、活物質の種類で大きく異なることが赤間らによって調べられている。しかしながら、それは電解液存在下での電池性能評価によるところであった。 反面、白谷らによると酸化皮膜の絶縁性は、そこに接触する材料によって大きく変化することが知られ、特に水によって大きな絶縁性が発現されることが知られている。 そこで本研究では、電解液の存在下とそうでない状況においてアルミニウム酸化皮膜と活物質の界面のインピーダンスがどのように変化するかを調べ、リチウムイオン二次電池やアルミ電解コンデンサの基礎的な知見を得ることを目的とした。 アルミニウムは、軽量で電気伝導性がよく耐食性があるためリチウムイオン二次電池の正極集電体に広く使われている。 しかし、表面に酸化皮膜を作るため、その接触抵抗を低減することは電池の

兼子 佳奈, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

テーマ名

熊倉  孝典, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

N-メチルピロリドンに溶解したポリフッ化ビニリデンの電気伝導性に及ぼす電池活物質の影響

LMOスラリーの濃度とインピーダンス ⇒#4046@講義; ⇒#3611@講義; 水分、マンガン酸リチウムは還元劣化させる。酸化鉄はそうでもない。 ⇒#77@プロジェクト;

田中 真未, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

異なる粘土を用いたコンデンサの電気的特性評価

⇒#14075@試料; ⇒#631@卒論; ⇒#624@卒論; ⇒#68@プロジェクト;

長岡 功大, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

セロハンテープを使った迅速簡便活物質評価用電極の開発

「握手してください」と微笑み、そして深々とお辞儀をして、卒業してゆきました。ありがとう。

村形 祥太郎, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

粘土分散液の電気的特性に関する研究

溶媒のXRD 粘度のインピーダンス 本実験では、粘土分散液をコンデンサの誘電体として用いたときの電気的特性について評価することを目的とした。 ⇒#68@プロジェクト; ⇒#629@卒論;

中野 伊織, 山形大学 卒業論文(仁科・立花・伊藤研), (2019).

電解液の長寿命化(仮)

豊田覚, 山形大学 修士論文(皆川研究室), (2019).

高速充放電対応型マンガン酸リチウムを使った電池の内部抵抗発現要因と正極設計指針

有機電解液の⇒#93@物理量;は、水溶液系に較べてヒトケタ小さい。 ⇒#20@材料; ⇒#13355@試料; ⇒#13509@試料; コバルト酸リチウム⇒#465@化学種; コバルト酸リチウムはマンガン酸リチウムより接触抵抗?が小さい。アルミニウムではその差が顕著だが、金でも同様の傾向が見られる。 ⇒#391@学会; ⇒#92@物理量;⇒#206@物理量;⇒#613@物理量; ⇒#35@図; ⇒#36@表; ⇒#606@卒論;

みゆき, 山形大学 修士論文(仁科・立花・伊藤研), (2019).

アノード酸化皮膜に対する対象物接触による絶縁性の発現理論

⇒#385@学会; ⇒1974@講義; ⇒4015@講義; ⇒#13309@試料; ヨモギの研究。 焼き豚の研究。 ⇒#8@計算; ⇒#171@計算; ⇒#43@図; ⇒#41@図; ⇒#838@講義; ⇒#38@図; ⇒#3824@材料; ⇒#19@材料; ⇒#67@プロジェクト;

白谷貴明, 山形大学 修士論文(仁科・立花・伊藤研), (2019).

粘土でしょ?

⇒#13653@試料; ⇒#209@測定装置; ⇒#4642@講義;

よこお, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

導電性高分子と酸化被膜の間にかかる圧力がコンデンサの特性に与える影響

導電性高分子と酸化被膜の間にかかる圧力がコンデンサの特性に与える影響 ⇒#745@装置; ⇒#592@装置;

増子勝一, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

バインダと電極

⇒#381@学会;

黒澤大輝, 山形大学 修士論文(仁科・立花・伊藤研), (2018).

高速マンガン酸リチウム

⇒#20@材料; ⇒#4640@講義; ⇒#11320@シラバス; ⇒#62@図;

石川智士, 山形大学 修士論文(仁科・立花・伊藤研), (2018).

導電性高分子固体電解コンデンサ

導電性高分子固体電解コンデンサ 電解コンデンサの絶縁性とは? ⇒1974@講義; ⇒4015@講義; ⇒#73@図; https://edu.yz.yamagata-u.ac.jp/Public/54299/c1/Extra_Syllabus/2017_H29/20170306.asp ⇒#92@物理量; ⇒#380@学会; ⇒#4643@講義; ⇒#255@卒論;

関口 理希, 山形大学 修士論文(仁科・立花・伊藤研), (2018).

マグネシウム電池

井上幸弥, 山形大学 修士論文(仁科・立花・伊藤研), (2018).

導電性高分子の導電剤

鈴木 崇広 ⇒#74@プロジェクト; ⇒#92@物理量; マンガン酸リチウムスラリー ⇒#14170@試料; ⇒#14168@試料; ⇒#2388@研究ノート; リチウム電池とインピーダンス ⇒#98@図; ⇒#113@図; ⇒#3824@材料;

鈴木 崇広, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

電気二重層キャパシタの静電容量に着目した柿炭の評価

電気二重層キャパシタの静電容量に着目した柿炭の評価 籾殻燻炭、スターリングエンジン、発電、モニタリング ⇒#13846@試料;

太田貴之, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

リチウム電池の負極材料

小林晃太, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

アルミニウムと導電性高分子の密着性

⇒#13@図; バインダー、電極 鈴木 崇広⇒#609@卒論; ⇒#92@物理量; ⇒#305@物理量; ⇒#12@図; ⇒#2325@研究ノート;

後藤武, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

テーマ名

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

荒川凌志

⇒#92@物理量;

荒川凌志, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

イネ、炭素、異物、ライブ配信

⇒139@キャビネット; イネ、炭素、異物、ライブ配信 ⇒#13014@試料;

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

IOTと化学の融合(仮)

https://edu.yz.yamagata-u.ac.jp/Public/54299/2014/tyd41807/index.html ⇒#92@物理量; ⇒#403@学会;

高橋 宏義, 山形大学 卒業論文(仁科・立花・伊藤研), (2018).

リチウムイオン二次電池におけるバインダーの解明

⇒4309@講義; ⇒#361@学会; ⇒4016@講義; ⇒#384@学会; ⇒#464@化学種; ⇒10943@試料; ⇒#20@材料;

赤間未行, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

バイオマス発電で出てくる廃棄物の有効活用に関する研究

バイオマス発電で出てくる廃棄物の有効活用に関する研究 「スターリングエンジンは,図1に示すように2つのピストンで構成されています。そして,作動ガスを排出することなく,繰り返して用いる密閉式のエンジンです。熱エネルギーを有効に利用し,高効率を達成するために蓄熱式熱交換器(再生器)が採用されているのが大きな特徴です。」 出典:http://www.nmri.go.jp/eng/khirata/stirling/cycle/ 「植物を育てるとき、それぞれの性質に合った土を作ることが大切です。日本は、酸性雨が降ることから、多くの植物が苦手とする酸性に土質が傾いていることで知られます。そんなとき、土壌改良材として活躍してくれるのが籾殻くん炭です。今回は、籾殻くん炭とはどんなものなのか、効果や使い方、作り方についてご紹介します。」 出典:https://horti.jp/14554 「スマートグリッドは情報処理の塊である」 出典:https://edu.yz.yamagata-u.ac.jp/Public/52227/52227_02.asp 「電力は工業

虻川輝明, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

タクトタイム向上のためのPRTR法に基づくアプリ開発

高速フーリエ変換とその応用 出典:https://edu.yz.yamagata-u.ac.jp/Public/52227/52227_09.asp 薬剤の管理 出典:https://edu.yz.yamagata-u.ac.jp/Public/52227/52227_12.asp ⇒4323@講義;

石塚大晃, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

充放電特性から高度な電池反応特性を知り、BMSへの応用を考える

大橋悠太郎, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

蓄電デバイスのための炭素材料を使った電極設計法

⇒1671@講義; ⇒#130@材料; ⇒#13514@試料; ⇒13611@試料;

佐藤大生, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

アルミニウム被膜と蓄電デバイス材料接触時の電気化学的挙動

白谷貴明, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

高速充放電マンガン酸リチウム電池に使うスラリーの設計

関根慧, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

3Dプリンターを活用したリチウム電池の動作モデル

⇒4061@講義;

本田アンドレイ, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

IoTを活用した稲の水耕屋上栽培の実用化

熊倉亮介, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

温度,気温による蓄電デバイス簡易実験の影響

鉛電池

山本宗一郎, 山形大学 卒業論文(仁科・立花・伊藤研), (2017).

正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ

正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ リチウム電池の正極活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗に及ぼす影響(仮) 活物質の種類がアルミニウム|炭素材料の接触抵抗に及ぼす影響(仮) リチウム電池の正極においてアルミニウム集電体と炭素導電助材の接触抵抗の低減は電池の内部抵抗を小さくしてレート特性を向上できると同時に過充電抑制の効果が期待できる。そのためアルミニウム集電体に炭素材料をアンダーコートするなどの方法がとられてきた。しかしながら合材に含まれる活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗へ与える影響について十分に解明されているとは言えない。そこで本研究では合材に含まれる活物質の種類を変えて、それがどのようにアルミニウム集電体と炭素導電助材の接触抵抗に影響を与えるか調べることを目的とした。 【学会】小野寺伸也、…らは、2013年に弘前パークホテルで開催された第30回ARS弘前コンファレンスにおいてリチウムイオン二次電池の集電体アルミニウムと活材層の接触抵抗に対するCNTアンダーコートの効果について報告して

しんや, 山形大学 修士論文(仁科・立花研), (2016).

2V級水系リチウム電池における正極集電体と正極合材界面に関する研究

https://www.as-1.co.jp/academy/15/15-4.html http://www.ic.is.tohoku.ac.jp/~swk/lecture/yaruodsp/zt.html https://www.yonago-k.ac.jp/denki/lab/nitta/lecture/E5_signal/note/note20.pdf http://www.miyazaki-gijutsu.com/series/control421.html

HN, 山形大学 卒業論文(), (2016).

アクリルバインダーの耐酸化性評価(仮)

アクリルバインダーの耐酸化性評価(仮) アクリスバインダーの耐酸化性はどうなっているのかなあ? 学会参加計画は? 水系バインダーを使ったときのスラリーのアルカリ化についてもちょっと不明ですね。

なおき, 山形大学 修士論文(仁科・立花・伊藤研), (2016).

機器分析を応用したマンガン酸リチウムの固体表面極性の評価と電池性能

機器分析によるマンガン酸リチウムの固体表面極性の評価と電池性能(仮)

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

アルミ固体電解コンデンサにおけるカソード材料設計指針の検討

せきろめんでぃ, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

アセチレンブラックとカーボンナノチューブを使ったスラリー最適化と活物質充填率向上

【材料】カーボンナノチューブ⇒#3164@材料; ⇒#592@卒論;

菅野広彰, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

2V級水系リチウム電池における電解液に関する研究

小室直人, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

種々の化条件で生成したアルミニウム皮膜と導電性高分子の接触状態の解析

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

フッ化皮膜を持つアルミニウム箔を使った電気感受率と接触抵抗の関係

仲島 フッ化皮膜を持つアルミニウム箔を使った電気感受率と接触抵抗の関係 小野寺らの論文によればアルミニウムの不動態皮膜による接触抵抗は 接触している材料の電気感受率に大きく左右されることが示されている。 しかしながら小野寺らの論文ではアルミニウムの不動態皮膜については酸化皮膜ついてであり 実際のリチウム電池に使われる有機電解液を想定したフッ化皮膜については検討されてない。 そこで本研究では有機電解液中でアルミニウムにフッ化皮膜を生成させ そのときの不動態皮膜の接触抵抗が小野寺らの理論で説明可能かどうかを調べることを目的とする。

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

電力自由化に向けた鉛電池の遠隔モニタリング&コントロール

電力自由化とスマートアグリに向けた遠隔モニタリングとエネルギーハーベスティング ⇒#588@卒論;

HN, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

粘土鉱物の電気化学への応用

しょうた, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

種々の人工光源がイネの発芽に与えるストレスのESRによる評価

本田敦哉, 山形大学 卒業論文(仁科・立花・伊藤研), (2016).

水分散系バインダーを含む活物質スラリーがアルミニウムと炭素の密着性に及ぼす影響

たくや, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

私が研究室の5Sを実践できなかった原因

私が研究室の5Sを実践できなかった原因 水分散系バインダーを含む活物質スラリーがアルミニウムと炭素の密着性に及ぼす影響

かずひろ, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

LCRメーターと水系電解液によるリチウム電池用電極の接触抵抗簡便迅速評価

CMC、接着剤 水分散系バインダーを含む活物質スラリーがアルミニウムと炭素の密着性に及ぼす影響 LCRメーターと水系電解液によるリチウム電池用電極の接触抵抗簡便迅速評価 (仮) 山形大学工学部物質化学工学科 ⇒#135@装置;

かずうみ, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

水熱法で合成したリン酸鉄リチウムに適した合材スラリー設計

けいま, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

水系電解液中での内部抵抗測定によるリチウム電池正極合材用炭素材料の選択

水系電解液中での内部抵抗測定によるリチウム電池正極合材用炭素材料の選択 山形大学工学部物質化学工学科 極合材の炭素材料をいかに選ぶか?それがリチウム電池性能向上の鍵を握る。 現在、ほとんどの乾電池、そしてリチウムイオン二次電池には、導電助剤としてアセチレンブラック(以下AB)が基本的に使用されている。1) 樽本らはカーボンナノチューブ(以下CNTなど)は製造方法により形状および物性値が異なり、種類によって電池性能を劇的に変化させる可能性があると述べている。2) カーボンナノチューブといっても層構造の違いから大きく二つに分類でき、単層カーボンナノチューブと多層カーボンナノチューブに分類できる。そして原子配列の違いからアームチェア構造、ジグザグ構造、らせん構造の三つに分類できる。そしてカーボンナノチューブの特徴として、太さが同じであっても巻き方が違うと電気的性質が異なる。3) ・単層ナノチューブ作製法 アーク放電法、レーザー蒸発法、この二つの作製法では金属触媒が重要 また、レーザー蒸発法では、ナノチューブの成長空間の温度が1200℃と非常に高いところ

うのたつや, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

交流インピーダンス法による増粘剤と分散剤の周波数特性

くまくら, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

赤外ATR法による粉末固体マンガン酸リチウムの表面官能基の同定

【卒論】りょうたは、2014年に、それまでの研究を赤外ATR法による粉末固体マンガン酸リチウムの表面官能基の同定というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#560@卒論;。

かずひこ, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

CNTの活物質表面被覆とスラリー粘度の関係(仮)

ESR同時測定可能な偏平電気化学セルの開発 【材料】カーボンナノチューブ⇒#3164@材料; 【グラフ】 ⇒#1138@グラフ; ⇒#1137@グラフ; ⇒#1139@グラフ; ⇒#1140@グラフ;

けんた, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

バインダの誘電率と電解液の分解電圧の関係

アルミニウムの種類と接触抵抗 近年、リチウムイオン電池の使用用途は従来の民生用途から、車載用途へ拡大しており、リチウムイオン二次電池の更なる高出力化が求められている。高出力化のニーズに伴い、正極活物質の電位はさらに高電位化していく可能性が考えられ、電極を構成するバインダにも高い耐酸化性能が要求されると考えられる。1)  これまで、リチウムイオン二次電池に用いられる正極多孔質電極の一般的な製造方法としては、分散媒にNMPを用いた有機溶剤系スラリーを集電体に塗布する方法が主として用いられてきた。これに対して安全性や環境面、製造コストから分散媒に水を用いた製造方法の開発が求められている。2) 以前は、負極バインダとしてPVDFをNMP溶媒に溶解させた溶剤系バインダが使用されていたが、充電極板の過熱分解発熱量が低い、高容量が得やすい、サイクル特性に優れるなどの点からSBRやポリアクリレートに代表されるポリマーを水中に粒子状に分散させた水系バインダーが多く使用されるようになり、現状では市場の70%近くを占める。3)  佐藤らは、有機電解液中で電解液の分解電圧を測定し、比誘電率の高

おおうち, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

リチウム電池における正極合材スラリーの接触抵抗低減に最適な塗工状態の提案

リチウム電池における正極合材スラリーの接触抵抗低減に最適な塗工状態の提案 ICP-MAを用いたリチウムイオン二次電池電解液中のリチウムロスの測定

つよし, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

レイリー散乱を使った比色分析によるリチウムイオン二次電池正極活物質の固体表面極性の評価

粉では測定できるけれども、もっと精度をあげられないか? マンガン酸リチウムの水溶液中での評価 電解液に含まれる不純物イオンが電池反応に及ぼす影響(仮) レイリー散乱を使った比色分析によるリチウムイオン二次電池正極活物質の固体表面極性の評価 山形大学工学部物質化学工学科 リチウムイオン電池用水系バインダー⇒#13329@試料; 【学会】鈴木千晶,伊…らは、2014年にで開催されたにおいてレイリー散乱を使った比色分析によるリチウム二次電池正極活物質の固体表面極性の評価について報告している⇒#361@学会;。

すずき, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

未定

いっしー, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

スパークを用いたリチウム電池用電解液の引火点評価

うめつ, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

水系電解液を使ったリチウムイオン二次電池材料の接触抵抗評価(仮)

硝酸アンモニウム⇒#13322@試料; 硝酸リチウム⇒#13324@試料; 水系電解液を使ったリチウムイオン二次電池材料の接触抵抗評価(仮) AlF4アニオンを用いたアルミニウムアノード酸化のCVシュミレーション 【卒論】しょうごは、2014年に、それまでの研究をAlF4アニオンを用いたアルミニウムアノード酸化のCVシュミレーションというテーマで卒業論文としてまとめ、山形大学を卒業した⇒#540@卒論;。

かざね, 山形大学 卒業論文(仁科・立花・伊藤研), (2015).

蓄電デバイスに関わる材料評価と評価を行うためのコンピュータシステムへの応用(仮)

重要文化財の保護。 https://a.yamagata-u.ac.jp/amenity/Library/Exhibit/ExhibitInstanceIndex.aspx 蓄電デバイスに関わる材料評価と評価を行うためのコンピュータシステムへの応用(仮) AlF4-アニオンを含む有機電解液を用いたアルミノウムアノード酸化条件のデータベース化(仮) アルミニウムのアノード酸化の電気化学(仮) えんどうは、2009年に、それまでの研究をアルミニウムの表面酸化皮膜が有機電解液中でのアノード酸化に及ぼす効果というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#408@卒論;。 ○小林卓巨,…らは、2012年にで開催された平成24年度 化学系学協会東北大会においてAlF4-を含む電解液を使用したAlのアノード酸化と腐食機構について報告している⇒#318@学会;。 【性状】耐食性⇒#10@性状; 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; 卒業研究(C1-電気化学2004~),事業系廃

たくみ, 山形大学 修士論文(仁科・立花研), (2015).

エネルギーデバイスに使われる非導電性材料の構造がその電気的性能に与える影響

エネルギーデバイス材料の使われる誘電体の構造が電気的物性に与える影響(仮) 半導体の簡便迅速評価とそのエネルギーデバイスへの応用 分散剤の評価 有機半導体の評価 有機半導体の移動度の簡便迅速評価(仮) 【表】表4.2にコバルト酸リチウム(ID7545)の粉体インピーダンスのパラメータ⇒#28@表; 【性状】電気物性⇒#11@性状; 【物理量】導電率⇒#93@物理量;セル定数⇒#358@物理量;漏れ電流⇒#483@物理量;誘電率⇒#66@物理量; 【測定装置】20130419検討中には、LCRメータ(ZM 2355,NF回路設計ブロック)を用いた⇒#135@測定装置;。 【試料】LiFePO4⇒#12983@試料;ポリ(3-ヘキシルチオフェン-2,5-ジイル)⇒#10583@試料; 【業績】リチウムイオン二次電池の正極の分極時におけるアルミニウム集電体と炭素導電助材の密着性⇒#18249@業績; リチウムイオン二次電池の正極の分極時におけるアルミニウム集電体と炭素導電助材の密着性 立花 和宏, 伊藤 知之, 武田 浩幸, 及川 俊也, 本田 千秋,

ともゆき, 山形大学 修士論文(仁科・立花研), (2015).

スパークを用いたリチウム電池用電解液の引火点評価

空気電池における金属酸化物の触媒性能の簡便評価(仮)

かとう, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

ESR同時測定可能な偏平電気化学セルの開発

NMPの配向分極とESR測定(仮)

あきら, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

赤外ATR法による粉末固体マンガン酸リチウムの表面官能基の同定

活物質粉体誘電率の表面分析と電池特性(仮) 【試料】マンガン酸リチウム⇒#12692@試料; 【学会】西谷諒太,伊…らは、2013年に東北大学川内北キャンパスで開催された平成25年度 化学系学協会東北大会において急速充放電可能なマンガン酸リチウムの表面分析について報告している⇒#341@学会;。 伊藤知之、白…らは、2013年に東北大学川内キャンパスで開催された電気化学会第80回大会において粉体インピーダンス測定によるリチウムイオン二次電池用正極活物質の表面状態の評価について報告している⇒#335@学会;。

りょうた, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

粘度の異なるセルロース水溶液をバインダーとした水系スラリーが集電体アルミニウムに対する塗工性と接触抵抗に及ぼす影響

かずき, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

常圧焼結によって作製したケイ化マグネシウムとスズ化マグネシウムの性能評価

【化学種】スズ化マグネシウム⇒#2994@化学種; 【化学種】ケイ化マグネシウム⇒#2995@化学種; 【測定装置】20130419検討中には、MINI-GASCOM(PMG-1,)を用いた⇒#587@測定装置;。 【測定装置】20130419検討中には、POWER CONTROL UNIT(KT-1534T,)を用いた⇒#400@測定装置;。

しょう, 山形大学 卒業論文(), (2014).

水熱法で合成したリン酸鉄リチウムに適した合材スラリー設計

まさとし, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

交流インピーダンス法による増粘剤と分散剤の周波数特性

交流インピーダンス法によるリチウムイオン電池合材スラリーのポットライフとゲル化の挙動 アンダーコート加工電極の作成 分散剤 【物理量】ポットライフ⇒#534@物理量;粘性率⇒#402@物理量;

かつひで, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

スラリー製作およびアンダーコート電極

スラリー製作およびアンダーコート電極

ゆうき, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

電解液中に溶解したFeイオンが負極上に析出する際にセパレータが及ぼす影響

炭素材料中の鉄微粒子が電池の接触抵抗に及ぼす影響(仮) 【学会】伊藤知之、高…らは、2013年に京都教育文化センターで開催された第40回炭素材料学会においてリチウムイオン二次電池充放電時の炭素材料中の異物金属粒子の溶解と析出による化学短絡について報告している⇒#346@学会;。 【学会】伊藤知之、高…らは、2013年に弘前パークホテルで開催された第30回ARS弘前コンファレンスにおいてリチウムイオン二次電池の集電体アルミニウムと活材層の接触抵抗にスラリー中の異物金属粒子が及ぼす影響について報告している⇒#349@学会;。 【材料】鉄⇒#192@材料;四酸化三鉄⇒#668@材料;酸化鉄⇒#641@材料; 【学会】伊藤知之、高…らは、2013年に京都教育文化センターで開催された第40回炭素材料学会においてリチウムイオン二次電池充放電時の炭素材料中の異物金属粒子の溶解と析出による化学短絡について報告している⇒#346@学会;。 【試料】セパレータ⇒#13047@試料;

てつ, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

分散剤が影響するリチウム電池の正極の劣化原因の解明

分散剤が影響するリチウム電池の正極の劣化原因の解明 集電体アルミニウムの炭素アンダーコート層にCNTを用いたときの接触抵抗の評価! クロノポテンショメトリー 【プロット】クロノポテンショグラム⇒#4@プロット; 【材料】カルボキシメチルセルロース⇒#3141@材料;

しゅうと, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

粘度の異なるセルロース水溶液をバインダーとした水系スラリーが集電体アルミニウムに対する塗工性と接触抵抗に及ぼす影響

粘度の違うCMC溶液を変えた水系スラリーが集電体アルミニウムに対する塗工性と接触抵抗に及ぼす影響 有機電解液アニオンの種類と集電体からの合材剥離現象の関係(仮) 0.56 mol/L LiFSI EC/EMC⇒#12634@試料;

たくま, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

AlF4アニオンを用いたアルミニウムアノード酸化のCVシュミレーション

有機電解液アニオンの種類と集電体からの合材剥離現象の関係(仮) 0.56 mol/L LiFSI EC/EMC⇒#12634@試料;

しょうご, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

電解液に含まれる不純物イオンが電池反応に及ぼす影響(仮)

電解液に含まれる不純物イオンが電池反応に及ぼす影響(仮) 水系バインダー増粘剤由来のカチオンが電池性能に及ぼす影響(仮) NMPの不純物に関する研究(仮) 有機電解液アニオンの種類と集電体からの合材剥離現象の関係(仮) サイクリックボルタンメトリーによるリチウムイオン電池の材料の評価。 0.56 mol/L LiFSI EC/EMC⇒#12634@試料; 【材料】ヒドロキシエチルセルロース⇒#3738@材料; 【物理量】粘性率⇒#402@物理量; 【学会】深瀬薫子,小…らは、2013年に東北大学川内北キャンパスで開催された平成25年度 化学系学協会東北大会において電解液に含まれる不純物イオンが電池反応に及ぼす影響について報告している⇒#339@学会;。

かおるこ, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

水分散系バインダーを含む活物質スラリーがアルミニウムと炭素の密着性に及ぼす影響

異物付着がアルミニウム集電体のアルカリ耐食性に及ぼす影響(仮) アルミニウムアノード酸化皮膜の状態と量子化学計算(仮) 電流密度 電流密度⇒#84@物理量;電位上昇速度⇒#393@物理量;

なおき, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

高速充放電可能なマンガン酸リチウムが高誘電率である原因の解明

正極活物質の比誘電率について

こうへい, 山形大学 卒業論文(仁科・立花・伊藤研), (2014).

無機化合物によるホウ酸イオンの除去に関する研究

よしかわ, 山形大学 博士論文(遠藤研), (2014).

電気化学(仮)

○山内公仁,…らは、2009年に神戸大学 百年記念館六甲ホール、瀧川記念学術交流会館で開催された第48回電子スピンサイエンス学会年会においてラットのin vivo ESR計測による酸素曝露下の抗酸化剤評価について報告している⇒#265@学会;。

りか, 山形大学 博士論文(尾形・伊藤(智)研), (2014).

ICP-MAを用いたリチウムイオン二次電池電解液中のリチウムロスの測定

アルミニウムとフッ素の電気化学(仮) 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義;

きみまろ, 山形大学 卒業論文(仁科・立花研), (2014).

アルミニウム集電体表面の電気双極子の配列が接触抵抗に及ぼす影響

固体表面双極子モーメントの抑制によるリチウム電池集電体と炭素材料界面の接触抵抗の低減(仮) ちあきは、2012年に、それまでの研究を正極集電体へのバインダー接触と電池の信頼性(仮)というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#472@卒論;。 実験方法:EDLCモデルセル、サイクリックボルタンメトリー、交流インピーダンス法 新規電解液を用いたアルミニウムアノード酸化皮膜の制御と炭素合材すらりーの接触抵抗の制御 炭素材料を使った合材スラリーの分散安定性向上と評価法の確立 極性モーメントを制御した高分子材料のバインダーへの応用と評価法の確立 【性状】親水性⇒#25@性状;極性⇒#41@性状; 接触抵抗⇒#302@物理量; 【2013年】 リチウムイオン二次電池合材スラリーにバインダーとして使われるPVDFの溶液の電気化学的挙動⇒#18242@業績; 【学会】本田千秋、小…らは、2013年に弘前パークホテルで開催された第30回ARS弘前コンファレンスにおいてリチウムイオン二次電池の集電体アルミニウムと活材層の接触抵抗にPVD

ちあき, 山形大学 修士論文(仁科・立花・伊藤研), (2014).

Folin-Ciocalteu法による食品中の総ポリフェノール含量決定のための多検体迅速分析

Folin-Ciocalteu法による食品中の総ポリフェノール含量決定のための多検体迅速分析 【材料】フェノール試薬⇒#1898@材料; 【手法】フォーリン-チオカルト法 【測定装置】 ・XバンドESR装置(JEOL FR-30,日本電子株式会社)⇒#148@測定装置;。 ・マイクロプレートリーダー (chromate-4300)(ChroMate 4300,Awareness Technology)⇒#597@測定装置;。 【研究データ】 ・学内ネットワークから閲覧:可 【後輩】 ・植物ストレス&ポリフェノール(仮)⇒#518@卒論; ・うこぎ&ポリフェノール(仮)⇒#517@卒論; ・電解生成スーパーオキシドを用いるポリフェノール類の抗酸化能評価⇒#520@卒論; 【先輩】 高~大は、2012年に、それまでの研究をスキャナを用いる多検体同時比色分析法の研究 ―総ポリフェノール量の定量―というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#492@卒論;。 さやえんどうは、2007年に、それまでの研究をESR法によるヒメウコギの抗酸

くうき, 山形大学 修士論文(尾形・伊藤(智)研), (2014).

ESR法を用いたエネルギーデバイス材料の最適選択方法に関する研究(仮)

ESR法を用いたエネルギーデバイス材料の最適選択方法に関する研究(仮) ディラック電子 半金属 トポロジカル誘電体 Rasbba効果 【業績】伊藤智博・永…らは、2013年に有機エネルギーデバイスの炭素材料選択指針を目指したin situ ESR 測定用高感度電気化学セルの開発について報告し、有機エネルギーデバイスの炭素材料選択指針を目指したin situ ESR 測定用高感度電気化学セルの開発 【卒論】永~雄は、2014年に、それまでの研究をESR法を用いたエネルギーデバイ…と述べている⇒#18230@業績;。 【研究ノート】 In situ ESR測定を目指したエネルギーデバイス評価用ラミネートセルの開発⇒#1802@ノート; 【関連情報】 石炭の種類と炭素ラジカルのg値の関係⇒#11@表; 【継承】 永~雄は、2012年に、それまでの研究をIn situ ESR測定を目指した電池材料評価用ラミネートセルの開発というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#494@卒論;。

永~雄, 山形大学 修士論文(尾形・伊藤(智)研), (2014).

テーマ名

HN, 山形大学 卒業論文(), (2014).

テーマ名

ともひろ, 山形大学 卒業論文(), (2014).

数式大好き、任せなさい

たつお, 山形大学 卒業論文(), (2014).

電流遮断法によるリチウムイオン二次電池の過電圧緩和過程の解析(他にも?)

イベントリーダー 活物質とバインダー インピーダンスとスラリー(仮) 【関連講義】卒業研究(C1-電気化学2004~),バインダ⇒#768@講義; 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; バインダーの極性と電池性能に関する研究⇒#51@プロジェクト;

こうじ, 山形大学 卒業論文(仁科・立花研), (2013).

正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ

正極内部抵抗から見るリチウムイオン二次電池正極材料の最適な組み合わせ リチウム電池の正極活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗に及ぼす影響(仮) 活物質の種類がアルミニウム|炭素材料の接触抵抗に及ぼす影響(仮) リチウム電池の正極においてアルミニウム集電体と炭素導電助材の接触抵抗の低減は電池の内部抵抗を小さくしてレート特性を向上できると同時に過充電抑制の効果が期待できる。そのためアルミニウム集電体に炭素材料をアンダーコートするなどの方法がとられてきた。しかしながら合材に含まれる活物質の種類がアルミニウム集電体と炭素導電助材の接触抵抗へ与える影響について十分に解明されているとは言えない。そこで本研究では合材に含まれる活物質の種類を変えて、それがどのようにアルミニウム集電体と炭素導電助材の接触抵抗に影響を与えるか調べることを目的とした。 電池討論会 LCO、LTO LMO 【物理量】接触抵抗⇒#302@物理量; 【関連講義】 卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; 卒業研究

しんや, 山形大学 卒業論文(仁科・立花研), (2013).

AlF4-アニオンを含む有機電解液を用いたアルミノウムアノード酸化条件のデータベース化(仮)

アルミニウムのアノード酸化の電気化学(仮) えんどうは、2009年に、それまでの研究をアルミニウムの表面酸化皮膜が有機電解液中でのアノード酸化に及ぼす効果というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#408@卒論;。 ○小林卓巨,…らは、2012年にで開催された平成24年度 化学系学協会東北大会においてAlF4-を含む電解液を使用したAlのアノード酸化と腐食機構について報告している⇒#318@学会;。 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; 卒業研究(C1-電気化学2004~),事業系廃棄物の出し方について⇒#3725@講義; 山形大学工学部,廃棄物の処理⇒#1145@講義; 技術者倫理,歴史と事例に学ぶ~先人たちの足跡~(2011)⇒#3330@講義; 【試料】コンデンサ電解液サンプル⇒#10870@試料;

たくみ, 山形大学 卒業論文(仁科・立花研), (2013).

高分子材料の電気化学(仮)

高分子材料の電気化学(仮) バインダー ポリマー 【関連講義】卒業研究(C1-電気化学2004~),バインダ⇒#768@講義; 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; 卒業研究(C1-電気化学2004~),事業系廃棄物の出し方について⇒#3725@講義; 山形大学工学部,廃棄物の処理⇒#1145@講義; 技術者倫理,歴史と事例に学ぶ~先人たちの足跡~(2011)⇒#3330@講義;

たかひろ, 山形大学 卒業論文(仁科・立花研), (2013).

交流インピーダンス法によるバインダー溶液中での電池粉体材料の表面評価

電池合材スラリーの電気化学(仮) 【物理量】周波数⇒#16@物理量; インピーダンス 周波数 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; 卒業研究(C1-電気化学2004~),事業系廃棄物の出し方について⇒#3725@講義; 山形大学工学部,廃棄物の処理⇒#1145@講義; 技術者倫理,歴史と事例に学ぶ~先人たちの足跡~(2011)⇒#3330@講義;

しょう, 山形大学 卒業論文(仁科・立花研), (2013).

電解質アニオンが炭素材料の膨張に及ぼす影響(仮)

電解質アニオンが炭素材料の膨張に及ぼす影響(仮) 炭素材料の電気化学(仮) 【関連講義】卒業研究(C1-電気化学2004~),【2012年度(平成24)卒業研究】⇒#3821@講義; ○武田浩幸,…らは、2011年にタワーホール船堀(〒134-0091 東京都江戸川区船堀4-1-1) で開催された第52回電池討論会においてリチウムイオン二次電池過充電時のアルミニウム集電体からの炭素導電助材の剥離現象について報告している⇒#297@学会;。

なおき, 山形大学 卒業論文(仁科・立花研), (2013).

ESR法による高分子製品の劣化評価に関する研究

ESR法による高分子製品の劣化評価に関する研究 【材料】4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシル⇒#2998@材料;

瀬~文, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

カイワレ大根の総ポリフェノール量に及ぼす酸化ストレス負荷の影響

カイワレ&ポリフェノール(仮) 【材料】フェノール試薬⇒#1898@材料; 【手法】フォーリン-チオカルト法 【機器】フラットベッドスキャナー(EPSON GT-S620,EPSON)⇒#537@測定装置; 【同期】 植物ストレス&ポリフェノール(仮)⇒#518@卒論;。 うこぎ&ポリフェノール(仮)⇒#517@卒論; 【先輩】 高~大は、2012年に、それまでの研究をスキャナを用いる多検体同時比色分析法の研究 ―総ポリフェノール量の定量―というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#492@卒論;。 さやえんどうは、2007年に、それまでの研究をESR法によるヒメウコギの抗酸化能評価の研究というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#351@卒論;。 豊~朗は、2010年に、それまでの研究をスキャナによる多検体同時比色分析法の検討(仮)というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#449@卒論;。 【文献・資料】 ・http://jglobal.jst.go.jp/public/20090422/2009

斎~慶, 山形大学 卒業論文(), (2013).

半導体の簡便迅速評価とそのエネルギーデバイスへの応用

分散剤の評価 有機半導体の評価 有機半導体の移動度の簡便迅速評価(仮) 【物理量】導電率⇒#93@物理量;セル定数⇒#358@物理量;漏れ電流⇒#483@物理量; ポリ(3-ヘキシルチオフェン-2,5-ジイル)⇒#10583@試料; 【学会】リチウムイオン二次電池電解液中に溶解した鉄の負極集電体への析出とセパレータ貫通による化学短絡⇒#355@学会; ○伊藤知之、…らは、2012年に公共の宿 おおとり荘 で開催された第29回ARS津軽コンファレンスにおいて有機半導体を担持したアルミニウムアノード酸化皮膜の耐電圧に及ぼす前処理の影響について報告している⇒#327@学会;。 ○伊藤知之,…らは、2012年にで開催された平成24年度 化学系学協会東北大会において有機エレクトロニクス用有機半導体材料を溶解した溶液の導電率と濃度の関係について報告している⇒#315@学会;。 【関連講義】 卒業研究(C1-電気化学2004~),界面活性剤・分散剤・乳化剤⇒#3057@講義; 【関連講義】 卒業研究(C1-電気化学2004~),【20

ともゆき, 山形大学 卒業論文(仁科・立花研), (2013).

非水溶液中における一重項酸素の発生系と捕捉剤の検討

脂溶性物質の一重項酸素消去能評価法の研究(仮) 非水溶液中における一重項酸素(Singlet Oxygen)の発生系とその捕捉剤を溶媒,補足材,光増感剤,発生物質(エンドペルオキシド)を比較検討したものである. 【材料】DRD156⇒#3589@材料;,2',4',5',7'-テトラブロモフルオレセイン, 二ナトリウム塩⇒#1192@化学種; ,DMF⇒#862@材料;,TPC⇒#3624@材料;,ローズベンガル⇒#2019@化学種; エンドペルオキシド+DRD156+PBSのESRチャート⇒#18@プロット;を示す。ここで、横軸は磁束密度⇒#40@物理量;であり、縦軸は吸収率⇒#238@物理量;であることがわかる⇒#298@グラフ;。 【関連反応式】 ・TPCと一重項酸素の反応 ⇒#522@反応; ・DRD156のラジカル化⇒#521@反応; 【化学種】DRD156ラジカル⇒#1208@化学種; 【同輩】 【卒論】荒~宙は、2013年に、それまでの研究を水溶液中における一重項酸素の発生系と捕捉剤の検討というテーマで卒業論文としてまとめ、山形大

小~衣, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

水溶液中における一重項酸素の発生系と捕捉剤の検討

水溶液中における一重項酸素の発生系と捕捉剤の検討 ポイント1:一重項酸素補足剤DRD156の緩衝溶液の違いによるDRD156ラジカルの生成量の違い. ポイント2:一重項酸素補足剤のpH依存性もすこし. 【材料】DRD156⇒#3589@材料;,エオシンY⇒#1192@化学種;,HEPES⇒#2179@材料;,リン酸緩衝溶液粉末⇒#3599@材料;,水⇒#29@材料;,エンドペルオキシド⇒#3590@材料; 【緩衝溶液】 ・3-morpholinopropanesulfonic acid (MOPS)⇒#2215@材料; ・40 mM ブリトンロビンソン緩衝液(Britton-Robinson's buffer solution : BR)⇒#3727@材料;⇒#327@材料;⇒#511@材料;⇒#104@材料; ・2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES)⇒#2179@材料; ・0.1M リン酸緩衝溶液 (PBS)⇒#3599@材料; エンドペルオキシド+DRD156

荒~宙, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

うこぎ葉中の総ポリフェノール量に及ぼす調理加工の影響

うこぎ&ポリフェノール(仮) 【材料】フェノール試薬⇒#1898@材料; 【手法】フォーリン-チオカルト法 【機器】フラットベッドスキャナー(EPSON GT-S620,EPSON)⇒#537@測定装置; 【同期】 植物ストレス&ポリフェノール(仮)⇒#518@卒論;。 カイワレ&ポリフェノール⇒#528@卒論; 【先輩】 高~大は、2012年に、それまでの研究をスキャナを用いる多検体同時比色分析法の研究 ―総ポリフェノール量の定量―というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#492@卒論;。 さやえんどうは、2007年に、それまでの研究をESR法によるヒメウコギの抗酸化能評価の研究というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#351@卒論;。 豊~朗は、2010年に、それまでの研究をスキャナによる多検体同時比色分析法の検討(仮)というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#449@卒論;。 【文献・資料】 ・http://jglobal.jst.go.jp/public/20090422/200902177

加~み, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

フォーリン・チオカルト法とデジタル画像処理を用いた総ポリフェノール量の比色分析

フォーリン・チオカルト法とデジタル画像処理を用いた総ポリフェノール量の比色分析 【材料】フェノール試薬⇒#1898@材料; 【手法】フォーリン-チオカルト法 【装置】フラットベッドスキャナー(EPSON GT-S620,EPSON)⇒#537@測定装置; 【ソフトウェア】Adobe Photoshop CS 6 【装置】マイクロプレートリーダー(ChroMate 4300,Awareness Technology)を用いた⇒#597@測定装置;。マイクロプレートとして、標準96ウェルマイクロプレートを使用した。 【主な分析対象化学物質】Chlorogenic Acid⇒#10605@試料;, Gallic Acid⇒#8954@試料;, Phenol, Kaempferol, Catecho⇒#10427@試料;, Resorcinol, Hydoroquinone, 2,3-dihydoroxutoluene, 3,4-dihydoroxutoluene, 3,5-dihydoroxutoluene, 2,5-dihydoroxutoluene, 2,6-dihy

大~子, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

過酸化ラジカル発生系の検討と抗酸化能評価法への応用

過酸化ラジカル発生系の検討と抗酸化能評価法への応用 日~介らは,AIBN由来のラジカル(2-シアノ-2-プロピルラジカル=R⇒#930@化学種;)が酸素反応する速度が速く,ROO・が生成する.酸素が存在する場合,DMPOは,DMPO-OOR・が発生し,酸素が存在しない場合,DMPO-R・が発生している可能性が高いこと示している.⇒#531@卒論;。 【材料】 ・ヘプタキス(2‐O,6‐O‐ジメチル)‐β‐シクロデキストリン ⇒#3225@材料; ・2,2'-アゾビスイソブチロニトリル(AIBN)⇒#923@材料; ・5,5-ジメチル-1-ピロリンN-オキシド(DMPO)⇒#2168@材料; 【反応式】 (NC(CH3)2CN)2<->2CN(CH3)2C+N2⇒#466@反応; CN(CH3)2C・+O2<->CN(CH3)2COO・⇒#469@反応; 表 0.1 Mシクロデキストリン in PBS溶液1 mLに対し、0.2 M AIBN in DMSOの溶解度 AIBN in DMSO 滴下量[μL] AIBN終濃度[M]

中~資, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

電解生成スーパーオキシドを用いるポリフェノール類の抗酸化能評価

電解生成スーパーオキシドを用いるポリフェノール類の抗酸化能評価 【反応式】O2(-)(aq)<->O2⇒#243@反応; 【生成方法】電気分解⇒#1973@ノート; 【支持電解質】過塩素酸テトラエチルアンモニウム 【緩衝溶液】0.1M PBS水溶液(pH 7.4) 【生成手順】 (ⅰ)デシケーター内で支持電解質(C2H5)4NClO4(過塩素酸テトラエチルアンモニウム)0.057 gを20 mLスクリュー管に入れ, 乾燥保存させた. (ⅱ)乾燥させた支持電解質に再結晶したDMSO5 mLを加え, 溶解し, 0.05 Mの支持電解質溶液とした. (ⅲ)作用電極{グラッシーカーボン(直径3 mm)}, 参照電極(Ag), 対極電極(Pt), 酸素通気用ヘマトクリット毛細管を0.05 M支持電解質溶液の入ったスクリュー管に入れ電解セルとした. (ⅳ)純酸素(あらかじめDMSOで飽和)を通気しながら-0.75 Vvs.Agで10分間定電位電解を行った. (ⅴ)続いてスーパーオキシドの発生を維持するため30分間-0.4 mA定電流電解を行った(この状態でE

木~哉, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

炭素ラジカルを指標とした電池材料の評価法の研究

電池材料のESR評価(仮) 【研究ノート】 In situ ESR測定を目指したエネルギーデバイス評価用ラミネートセルの開発⇒#1802@ノート; 【関連情報】 石炭の種類と炭素ラジカルのg値の関係⇒#11@表; 【先輩】 永~雄は、2012年に、それまでの研究をIn situ ESR測定を目指した電池材料評価用ラミネートセルの開発というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#494@卒論;。

髙~美, 山形大学 卒業論文(尾形・伊藤(智)研), (2013).

電解生成スーパーオキシドを用いる抗酸化能評価法の研究

スーパーオキシド(O2-)は、酸素分子が一電子還元されて生成される活性酸素の一つである。活性酸素は種々の病気や老化に関わっているため、このO2-を消去する機能性食品に注目が集まっている。しかし、消去能を評価する手法は未だ確立されていない。その原因の一つはO2-の発生系である。これまで、キサンチン―キサンチンオキシダーゼ法、超酸化カリウム(KO2)を直接利用する方法が検討されているが、前者は酵素の阻害反応が起きてしまう可能性があり、後者はpHがアルカリ性に片寄ってしまうことがある。 本研究では、O2-発生系として電解生成系をとりあげ、それを用いた消去能評価法を確立する。また、溶液を混合した後迅速にスーパーオキシドを測定する方法を考案した。この方法を用いて抗酸化能評価を行う。 【実験】 【図】スーパーオキシドフローインジェクション⇒#22@図; 【結果のダイジェスト】 いくつかのフェノール化合物とスーパーオキシドとの反応速度定数を有効数字 2桁(せいぜい1.5桁)で求めている.有効数字が2桁の理由は,フェノール化合物が分解したことや純度の確認不足(不純物の影響)が考えられ

やなぎさわ, 山形大学 修士論文(仁科・立花・伊藤研), (2013).

テーマ名

あきひと, 山形大学 卒業論文(仁科・立花・伊藤研), (2013).

機能性食品のための総ポリフェノール量分析法とスーパーオキシド消去能評価法の開発に関する研究

機能性食品のための総ポリフェノール量分析法とスーパーオキシド消去能評価法の開発に関する研究 【業績】 Naoki …らは、2013年にFolin-Chiocalteu colorimetric analysis using a scanner for rapid determination of total polyphenol content in many test samplesについて報告し、…と述べている⇒#18240@業績;。 【共同実験テーマ】 木~哉は、2013年に、それまでの研究を電解生成スーパーオキシドを用いるポリフェノール類の抗酸化能評価というテーマで卒業論文としてまとめ、山形大学を卒業した⇒#520@卒論;。 やなぎさわは、2013年に、それまでの研究を電解生成スーパーオキシドを用いる抗酸化能評価法の研究というテーマで修士論文としてまとめ、山形大学を卒業した⇒#564@卒論;。 【関連ノート】 ラジカル競争反応の解析(トラップ剤と消去物質の反応時数が異なるとき)⇒#1961@ノート; 電解生成スーパーオキシド⇒#1973@ノート;

ふじた, 山形大学 博士論文(仁科・立花・伊藤研), (2013).

卒論…